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ABSTRACT

Whenever a bug or vulnerability is detected in the Linux kernel, the

kernel developers will endeavour to fix it by introducing a patch

into the mainline version of the Linux kernel source tree. However,

many users run older łstablež versions of Linux, meaning that the

patch should also be łbackportedž to one or more of these older

kernel versions. This process is error-prone and there is usually a

long delay in publishing the backported patch.

Based on an empirical study, we show that around 8% of all com-

mits submitted to Linux mainline are backported to older versions,

but often more than one month elapses before the backport is avail-

able. Hence, we propose a patch backporting technique that can

automatically transfer patches from the mainline version of Linux

into older stable versions. Our approach first synthesizes a partial

transformation rule based on a Linux mainline patch. This rule

can then be generalized by analysing the alignment between the

mainline and target versions. The generalized rule is then applied

to the target version to produce a backported patch. We have im-

plemented our transformation technique in a tool called FixMorph

and evaluated it on 350 Linux mainline patches. FixMorph cor-

rectly backports 75.1% of them. Compared to existing techniques,

FixMorph improves both the precision and recall in backporting

patches. Apart from automation of software maintenance tasks,

patch backporting helps in reducing the exposure to known secu-

rity vulnerabilities in stable versions of the Linux kernel.
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1 INTRODUCTION

The Linux kernel is one of the most important software projects

in the landscape of systems today. Its core functionality is used

by a multitude of devices, ranging from servers to IoT devices. To

support users with different feature/stability requirements, multiple

versions of the Linux kernel are actively maintained. When intro-

ducing a bug-fixing patch1 to the mainline version, maintainers

should backport the patches to old stable versions to keep them

up-to-date. The increasing number of devices that depend on the

Linux kernel and the rapid rate of evolution of the kernel raise a

challenge for maintainers to ensure the continuous availability of

the kernel code with the latest patches [39].

Although the mainline version of the Linux kernel shares a

common codebase with older versions, they typically diverge over

time as different features and fixes are added to the latest branch.

As a result, when a bug is patched in the mainline version, the patch

is often not directly applicable to another version. Given a patch

created for the latest version, backporting involves identifying the

correct patch location and adapting the patch to an older version.

Backporting is typically done manually by a developer, on a case-

by-case basis. The manual process of backporting is error-prone

and there is usually a long delay in publishing the backported patch.

This becomes critical when we consider security patches.

To understand the importance and challenges of backporting

patches, we first conduct an empirical study on the Linux kernel

versions spanning 2011-19. We found that (1) 51,663 patches have

been backported from the mainline to old versions, representing

around 8% of all the commits to the mainline version, and (2) the

backporting process typically took more than one month. Moreover,

backporting patches is not simple copy and paste, as it may involve

changing patch locations, changing the namespace (the variable

or function names used in different versions), and modifying the

code logic and structure. These findings indicate that automatically

backporting patches is important but challenging.

1Patch generally refer to a change to source files, i.e. to modify, add and delete lines.

633

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464821
https://doi.org/10.1145/3460319.3464821
https://doi.org/10.1145/3460319.3464821


ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Ridwan Shariffdeen, Xiang Gao, Gregory J. Duck, Shin Hwei Tan, Julia Lawall, and Abhik Roychoudhury

Existing program transformation techniques can potentially be

applied to automate the backporting process. Automated program

transformation [6, 7, 16, 22, 25, 33, 34] infers transformation rules

from human-written patches, and then applies the inferred rules

to an unforeseen codebase. These approaches have been used to

fix software bugs (e.g. GetaFix [6] and Phoenix [7]), automate

repetitive edits (e.g. Refazer [33] and Lase [25]), etc. However,

they have two main limitations: 1) they learn transformation rules

from multiple human-written patches, which are not always avail-

able in reality; 2) the program transformation techniques for fixing

software bugs, such as GetaFix [6], Phoenix [7] and Genesis [22],

infer transformations from the patches of different applications,

so they can only learn general transformation patterns shared by

multiple applications, e.g., inserting null checks, fixing API usage

errors. These limitations prevent the above techniques from effec-

tively backporting Linux kernel patches. In a backporting setting,

1) there is usually only one available patch (the one introduced in

the mainline version) and 2) most kernel patches are specific to the

kernel and the fix pattern cannot be learned from other projects.

Although GenPat [16] and Sydit [24] require only one example,

GenPat requires a large codebase to provide statistical information

on how to generalize the example, and Sydit simply generalizes all

identifiers and edit positions which may lead to false positives.

The main challenge of synthesizing transformation rules from

human patches lies in inferring a proper generalization. An under-

generalized transformation rule can lead to false negatives: it cannot

generate patches for some locations that should be patched. An

over-generalized transformation rule produces false positives: it may

generate patches for some locations that should not be patched.

The generalization problem becomes more serious when only one

human patch is available. Consider the following example patch

that fixes an off-by-one error by changing < to <=:

if (chunk_end + ∗ ch < skb) 7→

if(chunk_end + ∗ch <= skb)

In general, it is hard to infer whether to 1) generalize the variable,

e.g. ch, 2) generalize the dereference operation ∗ch, or 3) generalize

the whole left operand of the comparison.

Different from existing program transformation systems [6, 7,

22] that transform patches across different projects, our goal is to

transform patches between different versions of the same project.

Different versions of the same project share similar expressions,

algorithms, namespaces, etc. Ourmain insight is that the similarities

between versions can guide us in synthesizing properly generalized

transformation rules. Suppose vmainline is the original mainline

version targeted by developer patch and vold is the old version

to which the patch should be backported. For the above example,

we might observe that vmainline and vold use many variables (e.g.

chunk_end and skb), expressions and algorithms identically. In the

function affected by the patch, we also might observe the following:

matched statements:

vmainline : skb_pull(skb, ∗ch)

vold : skb_pull(skb, sctp_chunkhdr_t)

These matching statements suggest that ∗ch should correspond to

sctp_chunkhdr_t in the old version. To backport this patch from the

mainline to the old version, when synthesizing the transformation

rule, this observation can guide us to generalize ∗ch while keeping

the other elements concrete.

In this paper, we adopt the program synthesis technique for pro-

gram transformations and investigate how it can be adapted to meet

the needs of backporting patches from the mainline to old stable

versions. Specifically, we synthesize a transformation rule from the

vmainline patch and apply the transformation rule to multiple old

versions (v1, v2, ...vn). First, based on the single vmainline patch, we

represent it as a transformation rule R using a Domain Specific Lan-

guage. Since transformation rule R is specific to the given patch, we

propose a notion of partial program transformation rule Rp , which

allows certain fragments of Rp to be generalized according to the

context in which Rp is applied. For the above example, the partial

transformation rule could be:

if(chunk_end∼true + ∗ch∼true < skb∼true) 7→

if(chunk_end + ∗ch <= skb)

where identifiers (e.g. chunk_end) and an expression ∗ch aremarked

as flexible (e∼true means e is flexible). Second, we determine how

to generalize these flexible elements according to the alignment of

vmainline and vi, for each targeted older version vi. This alignment

models the matched code elements in vmainline and vi with respect

to the file, function, expression, namespace, etc. The main insight

is that similarities and differences of vmainline and vi modeled by

the alignment can guide us to decide which elements should be

generalized. This enables us to find an appropriate generalization

according to the target version in an on-demand manner.

We implement our approach in a tool named FixMorphÐi.e., a

tool for (Morph)ing (Fix)es across Linux versionsÐand evaluate it in

two different scenarios. In the first scenario, we construct a dataset

including 350 backported patches from the Linux kernel project. We

evaluate the effectiveness of FixMorph by comparing the syntactic

and semantic equivalence of the automatically backported patches

with the developer patches. Our results show that FixMorph can

backport 75.1% of the patches, producing a result that is semantically

equivalent to the developer ported patch. In the second scenario, we

identify 30 patches tagged with CVEs, committed to the mainline

branch, to evaluate our approach. In this scenario, FixMorph can

correctly backport 70% of them.

Contributions. This paper makes the following contributions.

• We perform a comprehensive study of the backported commits

of the Linux kernel spanning over nine years and 46 versions;

• We propose a novel transformation rule synthesis algorithm

that can produce properly generalized transformation rules and

automate the patch backport process;

• We design and implement our idea into a tool called FixMorph;

• We evaluate FixMorph on 350 mainline patches and show that

75.1% of the patches can be backported. The dataset and tool are

available at https://fixmorph.github.io.

2 EMPIRICAL STUDY

We conduct an empirical study of changes in the Linux kernel to bet-

ter understand the extent and characteristics of patch backporting.

Specifically, our study answers the following research questions:
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RQ1: How many patches are backported per release? What per-

centage of patches are backported?

RQ2: How long does it take to backport patches?

RQ3: How do developers backport patches? Can the patches be

applied directly, or do developers need to modify the patches, and

if so how do they modify the patches?

In our study, we investigated 46 versions (v3.1 to v5.5) of the Linux

kernel covering nine years (2011-2019). In total, we collected 633,860

commits submitted to the mainline version of the kernel and 144,437

commits that backport a mainline patch to an older stable version.

We focus on changes made to source code files and exclude commits

that change other types of files (e.g., configuration files).

2.1 Percentage of Backported Patches

We analyze the percentage of backported patches (commits) out of

all released patches. For each release version vrelease, we compute

the number of patches introduced in vrelease and cross-reference

with patches that were backported to older versions. Figure 1 shows

the distribution of the percentage of patches that were backported

for each vrelease. The distribution ranges from 3.87% - 16.29%, and

on average, 8% of patches for a release have been backported to at

least one older version. In total, among 633,860 mainline patches in

released versions, 51,663 have been backported to older versions. A

patch is only backported if it fixes an important bug or is required

to enable fixing an important bug [2].2 As users rely heavily on the

old stable versions (much more than the mainline), backporting all

those patches is critical.
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Figure 1: The distribution of backported patches per release

51,663 patches, accounting for 8% of all patches (commits),

were backported to older versions during 2011-2019.

2.2 How long does it take to backport a patch?

We investigate the delay between the time when a patch is commit-

ted to the mainline and when it appears in all relevant stable ver-

sions. We measure this delay by computing the difference between

the commit date of the patch in the mainline and the commit date

of the last backported patch. For example, the patch with commit

ID db4175ae3 was committed on 15 Jul 2014, and it was backported

to five stable versions (v3.2, v3.10, v3.12, v3.14 and v3.15). The last

backported patch (commit ID 5248ee65) was committed to v3.2.63

on 13 Sep 2014. Hence, the time to backport this patch is 15 Jul 2014

ś 13 Sep 2014, which is 60 days.

2S small percentage of patches add new device properties. These are considered to
introduce very low risk, due to the simplicity of the change, and high value.
3The detail of each commit can be found in https://kernel.googlesource.com/
pub/scm/linux/kernel/git/stable/linux-stable /+/COMMIT_ID^!
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Figure 2: Cumulative distribution of patch backporting time

Figure 2 shows a cumulative distribution function (CDF) for the

time of backporting patches in days. For simplicity, we only show

the data for a duration of up to a year. 80% of patches tookmore than

20 days, while around 50% took more than 46 days. We also found

that around 10% of backported patches took more than 365 days,

amounting to 4844 commits. As some bugs may be security critical,

the longer time it takes to backport patches, the higher possibility

that such bugs can be exploited bymalicious attackers. These results

indicate the necessity to accelerate the patch backporting process

and motivate us to design approaches to automate it.

Around 50% of backported patches took more than 46 days

to be backported from the mainline to old stable versions.

2.3 How does a developer backport patches?

To investigate the patch backporting effort required for a developer,

we manually inspect the backported patches. We choose to study

only the patches backported from a specific version (i.e., v3.8). We

label commits based on the difficulty of backporting:

• Type-I (no changes): the backported commit does not require any

change from the original patch;

• Type-II (only patch location changes): the patch location(s) (e.g.

the containing filename(s) and function name(s), line number(s))

are different in the mainline and the old versions;

• Type-III (only namespace changes): the original patch is adapted

by modifying variable names, function names, etc.;

• Type-IV (patch location & namespace changes): the original patch

is adapted by changing both the patch location and namespace;

• Type-V (logical or structural change): other changes are needed,

such as adding extra code or removing irrelevant code.

Table 1 shows the results of our manual analysis. In our analysis,

most of the backported patches are Type II, which require changes

to the patch locations. More than 10% of them are Type-IV or

Type-V, which represent the more challenging cases. If a patch has

been backported to multiple versions, we notice that the patches

backported to the oldest version are more likely to be Type-IV

or V, indicating the challenges of backporting patches to very old

versions. According to our manual inspection, the patch location

and namespace changes (Type-II, III, IV) are easier to automate,

while automating the Type-V changes is more challenging.

Table 1: Developer effort in backporting patches

Label Description Count Percentage

Type-I no changes 149 22.9%

Type-II only patch location changes 431 66.3%

Type-III only namespace changes 0 0%

Type-IV location & namespace changes 20 3.1%

Type-V logical and structural changes 50 7.7%
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int unix_read (struct

unix_state *state) {

......

+ scm_destroy (...);

}

int unix_revmsg (struct

unix_state *state) {

......

+ scm_destroy (...);

}

(a) Patch location changes when backporting from v4.5 to v3.2

- create_seq (" typeinfo",

0444 , NULL ,

&pageinfo_op );

+ create_seq (" typeinfo",

0400, NULL ,

&pageinfo_op);

- create (" typeinfo",

S_IRUGO , NULL ,

&pageinfo_fops );

+ create (" typeinfo",

0400, NULL ,

&pageinfo_fops);

(b) Namespace changes when backporting from v5.5 to v3.16

if (dev ->vendor == ID_INT) {

...

+ xhci ->quirks |=

XHCI_AVOID_BEI;

}

+ if (dev->vendor==ID_INT) {

+ xhci ->quirks |=

XHCI_AVOID_BEI;

+ }

(c) Structure changes when backporting from v4.0 to v3.2

Figure 3: Different types of changes to the original patch

Figure 3 shows three simplified backported patch snippets. Fig-

ure 3a shows a backported patch that changes the patch location.

This patch was first introduced in the function unix_read in v4.5

to fix a memory leak bug, and it was then backported to v3.2,

but to a different function unix_revmsg. To backport this patch,

the developer must manually find the correct function in the tar-

get version. Figure 3b shows a backported patch that requires

namespace changes. This patch was introduced in v5.5 to fix a

vulnerability, and backported to v3.16, by changing the API call

from create_seq to create, and the arguments from 0444 and

pageinfo_op to S_IRUGO and pageinfo_fops. Finally, Figure 3c

shows a patch that requires structural changes. This patch added a

quirk XHCI_AVOID_BEI to v4.0 under if-condition if (dev->vendor

== ID_INTEL). However, this if-condition does not exist in Linux

v3.2. So, to backport this patch, the developer needs to backport

this if-condition as well.

When backporting patches, a developer needs to find cor-

rect patch locations, change the namespace, and modify

the program logic and composition of the patch.

3 OVERVIEW

Figure 4 depicts a simplified bug-fixing patch and its correspond-

ing backported patches. This patch was first introduced in v5.1

(Figure 4a) and fixed a fault in the kernel paging request handler.

The patch changes an immediate return to a goto to take advan-

tage of the shared error handling code at the end of the function.

It also stores the original return value in a variable used by this

shared code. This patch was backported to eight stable versions

(v3.16, v3.18, v4.4, v4.9, v4.14, v4.19, v4.20, and v5.0). The backported

patches for v4.9 and v3.16 are shown in Figures 4b and 4c, respec-

tively. We make two observations, 1) the if-condition (highlighted

in Figures 4b and 4c) of the backported patches is not the same

as the if-condition of the mainline version v5.1 and 2) there is no

returned value in v3.16

if (!gcells ->cells || skb_cloned(skb)

|| netif_elide_gro(dev)) {

- return netif_rx(skb);

+ res = netif_rx(skb);

+ goto unlock;

}

(a) The patch introduced in v5.1 (commit 2a5ff07a)

if (!gcells ->cells || skb_cloned(skb) ||

!(dev->features & NETIF_F_GRO) ) {

- return netif_rx(skb);

+ res = netif_rx(skb);

+ goto unlock;

}

(b) Backported patch from v5.1 to v4.9 (commit 7cbb0ab1)

if ( !cell || skb_cloned(skb) ||

!(dev->features & NETIF_F_GRO) ) {

netif_rx(skb);

- return;

+ goto unlock;

}

(c) Backported patch from v5.1 to v3.16 (commit 415f08eb)

Figure 4: Sample backporting task

Given the patch p shown in Figure 4a, a developer needs to take

the following steps to backport p to older versions. First, the de-

veloper needs to analyse p to understand the surrounding context

where p is applied and understand how p changes the program.

Second, since the mainline version vmainline and target version vi
are not the same with respect to the affected code, the developer

needs to analyze their similarities and differences to find the correct

location in vi at which to apply p. At the same time, the developer

may need to adjust p according to the context of vi. Last, the de-

veloper produces a patch for the target version. FixMorph tries to

automate this process via transformation rule synthesis. Specifi-

cally, FixMorph takes the whole if-statement as p’s surrounding

context and synthesizes a partial transformation rule Rp . The trans-

formation rule is represented using a domain-specific language,

that will be explained in Section 4.2. For simplicity, we show Rp for

this example as follows:

if(t1 | | t2 | | t3) { returnm1(a1); } 7→

if(t1 | | t2 | | t3) { v1=m1(a1); goto l1; }

where t1.type=bool ∧ t1.code=ł!дcells−>cells”

∧ t2.type=bool ∧ t2.code=łskb_cloned(skb)”

∧ t3.type=bool ∧ t3.code=łneti f _elide_дro(dev)”

∧ a1.type=struct∗ ∧ a1.code=łskb” ∧ . . .

The partial transformation rule Rp keeps the keywords (e.g. if) and

some operators that affect high level transformation structures (e.g.

||) fixed and leaves the other elements in Rp as flexible for follow-up

adjustment. In this case, the expressions t1, t2, t3,m1,v1 and a1 are

marked as flexible, meaning that the constraints on them can be

relaxed. In this way, Rp allows certain expressions to be generalized,

so that FixMorph can determine the correct level of generalization

according to the target version by relaxing different expressions.

How does FixMorph decide which flexible expressions should

actually be relaxed for a given target version? To backport p from

v5.1 to v4.9, the original Rp cannot be directly applied. The first two

boolean expressions (corresponding to t1 and t2 in R
p ) are the same
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in v5.1 and v4.9, but the third expression is different. Therefore,

FixMorph relaxes the constraints on t3 by dropping the constraint

on t3.code, allowing t3 to be a different boolean expression. This

leads to the following rule, which is used for backporting to v4.9.

if(t1 | | t2 | | t3) { returnm1(a1); } 7→

if(t1 | | t2 | | t3) { v1=m1(a1); goto l1; }

where t1.type=bool ∧ t1.code=ł!дcells−>cells”

∧ t2.type=bool ∧ t2.code=łskb_cloned(skb)”

∧ t3.type=bool

∧ a1.type=struct∗ ∧ a1.code=łskb” ∧ . . .

Backporting to v4.9 required relaxing t3. Backporting p to v3.16

(see Figure 4c) requires relaxing both t1 and t3. Further, backporting

the patch to v3.16 requires a post-processing adjustment for the

transformation, which will be explained in Section 4.5. We omit the

details of the relaxed rule for v3.16.

In this example, FixMorph needs to generate different levels of

generalization (by relaxing different flexible expressions) to back-

port the patch to the different versions. The most generalized trans-

formation rule (generalize all flexible expressions t1, t2, . . . ) is able

to transform all the versions (except for the post-processing adjust-

ment). However, it will producemany false positives, i.e., incorrectly

transforming some if-statements that should not be transformed,

e.g. if(a | | b | | c) return foo(i).

4 METHODOLOGY

4.1 Preliminaries and Problem Statement

Typed Abstract Syntax Trees. An Abstract Syntax Tree (AST) is a

tree representation of the syntactic structure of source code. A

typed AST associates each tree node with one or more attributes,

including type information (e.g., int, bool, etc.), code, filename,

function name, etc. We denote the set of typed ASTs as T.

Transformation Rule. A transformation rule R : T → T formu-

lates how to transform a T to another T. Rule R can be represented

as a pair (guard, transformer) [26, 33] defined as follows:

• guard: T→ Boolean: guard is a conjunction of predicates over

AST nodes. Basically, a guard tests the type, code and other at-

tributes of an AST node and returns a Boolean value representing

whether the node satisfies its predicate or not;

• transformer: T → T: transformer takes an input T and con-

structs another T. It is built from two underlying operations: (1)

select: returns an existing node from input T satisfying a given

guard, and (2) construct: returns a new node constructed from

a specific node kind, attributes, and children.

Essentially, the rule guard determines which AST sub-node should

be transformed, and the transformer determines how the sub-

node should be transformed. Thus, for t ∈ T, we have R(t) =

transformer(t) when guard(t) is true, otherwise, R(t) is ⊥.

Transformation Rule Synthesis. Given an input domain I and an

output domain O, program synthesis takes a set {i0 7→ o0, ..., in 7→

on } of input-output pairs and synthesizes a program P : I→ O such

that P(ik ) = ok for k ∈ 0...n. For this paper, I=O=T, and thus the

synthesized program can serve as a transformation rule that trans-

forms an input T to output T. In general, the aim is to synthesize

a transformation rule (guard, transformer) that is the generaliza-

tion of the concrete transformations, so that guard(ik ) = true and

transformer(ik ) = ok for all k ∈ 0...n. Many existing synthesis

engines, e.g., Refazer, produce the most specific generalization.

That is, given a single input-output pair, those techniques do not

generalize anything.

Patch Backporting Problem. A patch p can be thought of as a

concrete transformation from one T to another T. Thus, to back-

port a patch from mainline version vmainline to old stable ver-

sions {v1, . . . vn}, FixMorph first synthesizes a transformation rule

R : T → T using the vmainline patch p, and then applies R to

{v1, . . . vn} to produce patches. Since R simply expresses the given

concrete transformation (vmainline patch p), we find that R is over-

fitting. That is, R can be applied to vmainline, but often cannot be

directly applied to the older versions {v1, . . . vn}.

Partial Transformation Rule. To address the overfitting problem,

we introduce a notion of partial transformation rule Rp . The rule

Rp annotates certain predicates as flexible. Intuitively, a partial

transformation rule Rp is a flexible generalization of the given

concrete transformation (i.e. the patch). This flexibility allows Rp to

be generalized in an łon-demandž manner according to the context

in which Rp is applied. Hence, FixMorph finds an appropriate level

of generalization for each old version vi, allowing backporting to

vi.

4.2 A DSL for Backporting Patches

Refazer performs transformation rule synthesis by searching over

a Domain-Specific Language (DSL) for specifying transformation

rules. FixMorph extends this DSL to the language LT shown in

Figure 5 (differences are highlighted in grey) to address the needs

of patch backporting. The differences are as follows.

First, to allow on-demand generalization, we allow predicates

to be marked with a flexible annotation, denoted by pred ∼

flexible, where flexible is a Boolean value. If a predicate can be

relaxed, its corresponding flexible annotation will be true, other-

wise it will be false. Second, existing synthesis frameworks focus

on the local context (e.g., node kind). However, when backporting

patches between different versions, we find that the global context

(e.g., the file name and function name) can also help guide the back-

porting process. In general, a patch will most likely be backported

to a file and function with the same name as in vmainline. To sup-

port this feature, we add two predicates InFile and InFunction

to our DSL LT . Finally, since FixMorph is built on top of typed

ASTs, we also add a type checking (HasType) predicate to LT .

4.3 Transformation Rule Synthesis

In this section, we describe how to synthesize a partial transfor-

mation rule Rp from a given vmainline patch p. Given patch p, Fix-

Morph first builds two ASTs ti , to ∈ T representing the code be-

fore/after the application of p. Essentially, p is represented as an

AST transformation ti
p
7−→ to . A typical patch p will only affect some

subsets of the complete code, e.g., some specific lines, statements,

or functions. Rather than representing p as a global transformation

over the entire file (or files), we restrict ti and to to the local AST
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rule := (guard, transformer)

guard := pred ∼ flexible | Conjunction(pred, guard)

pred := IsKind(node, kind)

| Attribute(node, attr) = value

| Not(pred)

| HasType(node, type)

| InFile(node, fileName)

| InFunction(node, functionName)

flexible := true | false

transformer := select | construct

construct := Tree(kind, attrs, childrenlist)

childrenlist := EmptyChildren | select | construct

| Cons(construct, childrenlist)

| Cons(select, childrenlist)

select := Match(guard, node)

node := ...

Figure 5: Domain-specific language for transformation rules

nodes changed by p as well as some surrounding context. Our ap-

proach is analogous to the context diff formats supported by the

standard diff and patch tools, where the patch p includes not only

the changed lines, but also some surrounding unchanged lines for

context. The context serves as a reference point and allows for the

patch to be applied even if other unrelated parts of the code have

been modified. Since we aim to backport patches to older versions

with other modifications applied, our motivation is similar. For the

context, FixMorph takes the parent and all siblings of any AST

node changed by p. For example, the patch shown in Figure 4a

changes a branch of an if-statement. FixMorph, therefore, takes

its parent node, i.e., the if-statement, as the surrounding context.

Thus, the patch p is represented as an AST transformation over the

if-statement rather than specific changed nodes. In addition to the

AST context, FixMorph also includes other forms of context in the

guard, such as the file and function name of the patch location.

Algorithm. Given an input-output pair (ti , to ) extracted from

patch p, FixMorph first translates p to a transformation rule in the

form (Rguard,Rtransformer), which is specified using the LT DSL

in Figure 5. In particular, the synthesis engine first synthesizes the

most specific Rguard that satisfies Rguard(ti ) = true . This is essen-

tially a conjunction of all LT predicates satisfied by ti . Similarly,

the synthesis engine synthesizes a Rtransformer that implements

the transformation ti 7→ to . However, the produced transformation

rule is overfitting to the given input-output pair (ti , to ), and does

not generalize to others. Therefore, instead of directly using Rguard
and Rtransformer, FixMorph produces a partial transformation by

marking one or more predicates used by them as being flexible.

Specifically, FixMorph marks the predicates of Rguard as flexible to

allow relaxing the requirements in finding locations to apply the

patch. FixMorph marks the predicates of guard used by select

operators as flexible to allow relaxing the requirements in selecting

nodes from ti .

Example 4.1. Consider the following transformation:

if(chunk_end + ∗ch < skb) {...} 7→

if(chunk_end + ∗ch <= skb) {...}

The right-hand side of the corresponding partial transformation

rule is:

Tree(IfStatement, [], [

Tree(BooleanExpression, [], [

select1, Tree(Opcode, ["<="], []), select2]) ])

where select1 is specified by the guard:

HasType(node, Integer) ∼ false ∧

IsKind(node, BinaryOperator) ∼ true ∧

IsKind(node.kids[2], DeReferExpr) ∼ true ∧

IsKind(node.kids[2].kids[1], Identifer) ∼ true ∧

Attribute(node.kids[2].kids[1], Code)="ch" ∼ true ∧ . . .

and select2 is specified by the guard

HasType(node, Integer) ∼ false ∧

Attribute(node, Code)="skb" ∼ true

Flexible predicates allow select operations to be relaxed. For exam-

ple, a relaxed select1 allows for a different "Code" to be used.

By default, FixMorph marks predicates over the "Code" (gen-

erally, only leaf nodes have a Code attribute.), "FunctionName",

"FileName", and "Kind" attributes as flexible, and predicates over

"Type" as non-flexible. The intuition is that predicates over node

types determine the high-level structure of the transformation, and

are more likely to be preserved over different versions of the same

code.

Remark. A predicate that is marked as flexible is not necessarily

relaxed by the synthesis process. Relaxing all flexible predicates will

produce an over-generalized transformation rule, which may produce

false positives. For instance, an over-generalized Rp from Example 4.1

may incorrectly transform an unrelated node, e.g., if(a + b < c){. . . }.

4.4 Relaxing a Transformation Rule

Once a partial transformation rule Rp is synthesized for vmainline
patch p, FixMorph decides how to relax Rp for each old stable

version {v1, . . . vn}. To help with this process, we introduce the

notion of alignment between different versions.

Alignment. We define an alignment to be a set of mappings

between the code elements or context of vmainline and each vi. For

example, given the following expressions:

skb_pull(skb, ∗ch) from vmainline
skb_pull(skb, sctp_chunkhdr_t) from vi

an alignment of vmainline and vi would be {skb 7→ skb, ∗ch 7→

sctp_chunkhdr_t, . . . }. From the alignment FixMorph builds multi-

ple mappings, including:

• File: maps of the files between vmainline and vi;

• Function: maps of functions between matched file pairs;

• Expression: maps of the matched expressions, e.g.,

∗ch 7→ sctp_chunkhdr_t;

• NameSpace: maps of the matched identifiers.

First, FixMorph aligns the source files from vmainline to vi using

a combination of the Git version control history and clone detection.

For each modified file, FixMorph uses git to determine the name

of the corresponding file in the target version. If git produces no

information, FixMorph uses clone detection [17] to find the file in
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the target version that is most similar to the modified file in the

mainline. Next, FixMorph aligns each function, expression, and

namespace in the affected files using a combination of GumTree [8]

and anti-unification [30]. Given two ASTs t1 and t2, GumTree can

generate an edit script comprised of insert, delete, move and

update operations that can transform t1 into t2. Besides, GumTree

also constructs a set of matched pairs for the unchanged code

elements. For our application, we re-purpose GumTree to generate

mappings between two ASTs rather than generate an edit script.

Specifically, the GumTree update operation can be used to to derive

a set of maps between the code elements (e.g. member accesses,

variables) between vmainline and vi.

Using GumTree, the mappings between the same kinds of code

elements (e.g., identifier to identifier or, assignment to another as-

signment), can be extracted. We then use an approach based on anti-

unification [30] to generate other kinds of mappings such as expres-

sion to identifier (e.g., ∗ch to sctp_chunkhdr_t). To do so, we analyze

the alignment between the matched non-leaf pairs of vmainline and

vi via anti-unification. Given ASTs ti and to , their anti-unification

is given by (τ , ⟨σ1,σ2⟩), where τ is an AST with labelled holes

{h0, . . . ,hn }, and two substitutions σ1,σ2 : {h0, . . . ,hn } → nodes

such that σ1(τ ) = ti ∧ σ2(τ ) = to . We then use the substitutions

to generate a mapping σ−1
1

σ2 between the nodes of ti and to . The

mappings produced by GumTree and anti-unification are combined

to produce the complete mapping.

Example 4.2. Given the following if-statements:

if(chunk_end + ∗ch < skb) {...}

if(chunk_end + sctp_chunkhdr_r < skb) {...}

We can apply anti-unification to their ASTs to generate:

(if(chunk_end + h1 < skb), ⟨h1 7→ ∗ch,h1 7→ sctp_chunkhdr_r⟩).

The anti-unification result is then used to derive the mapping

{∗ch 7→ sctp_chunkhdr_r}.

Relaxation. Once FixMorph generates a map {nodei
1
7→ nodeo

1
,

. . . , nodeim 7→ nodeom} between vmainline and vi, FixMorph re-

laxes Rp as follows. Suppose a flexible predicate is presented as

pred(node, property), meaning a predicate on the property (e.g.

łType”, łKind”, łCode”, etc.) of node. FixMorph relaxes such a predi-

cate if and only if the property of node is different from the property

of its mapped node. FixMorph relaxes pred and all the predicates

on node’s children.

Example 4.3. Let us revisit Examples 4.1 and 4.2. For the predicate

IsKind(node.kids[2], DeReferExpr) in select1, its corresponding

node from vmainline is ∗ch, while the mapped node from v3.5 is

sctp_chunkhdr_r . Since the Kind of ∗ch is different from the Kind of

its mapped node, FixMorph relaxes this flexible predicate. Besides,

FixMorph relaxes the predicate on ∗ch’s child nodes, including:

IsKind(node.kids[2].kids[1], Identifer) and

Attribute(node.kids[2].kids[1], Code)="ch"

With the relaxed select1, the transformation rule can generate the

transformation:

if(chunk_end + sctp_chunkhdr_r < skb) {...} 7→

if(chunk_end + sctp_chunkhdr_r <= skb) {...}

4.5 Applying the Transformation Rule

Applying the learnt rule to vi itself may not be adequate to suc-

cessfully transform the program. Although FixMorph learns the

transformation rule, the transformed AST could still be incomplete.

To make it complete, FixMorph may make a set of post-processing

changes, as articulated in the following:

Add missing dependencies. The backported patch pi may depend

on some variables, functions, arguments, etc. that are missing in

vi. FixMorph detects such missing dependencies used by pi and

rectifies them by importing such dependencies. Specifically, Fix-

Morph analyses the AST nodes that are referenced by pi to find

references to missing variables, functions, macros, etc. FixMorph

then recursively adds the missing definitions (such as a function or

variable declaration, header, etc) to vi.

Prune irrelevant transformation. Pruning of irrelevant transfor-

mations may be required to apply the transformation rule to version

vi. The commit that introduced patch p to vmainline may include

some version-specific changes that cannot be backported to vi. For

instance, the commit in vmainline may move a code statement from

one location to another location, whereby the code statement does

not exist in vi. FixMorph detects transformations that should be

pruned by treating each change introduced by patch p separately. If

FixMorph fails to find an alignment in vi for a modified statement,

FixMorph prunes the corresponding transformation.

Patch Validation. FixMorph applies R with the above mentioned

post-processing adjustments, to backport the patchp from vmainline
to vi. FixMorph first validates the patched vi via compilation to

check for build errors. If tests are available, FixMorph can further

validate the patched vi.

5 IMPLEMENTATION

Although we synthesize transformation rules using a Refazer-like

approach, we cannot directly reuse the Refazer tool since it is

designed for C# and Python programs. FixMorph is composed of

three main components (Build engine, Transformation rule synthesis

and Source code transformation) and amounts to 10,918 code lines

in Python and 2,645 code lines in C++.

The Build engine is used initially to build typed ASTs and finally

to validate the patched code. The build engine is based on LLVM/-

Clang, to benefit from its facilities for source-to-source transforma-

tion and handling of macros. Clang does, however, elide #ifdefs,

which can lead to missing some code. To limit the number of cases

that are considered, our build engine tries two strategies 1) rewrite

all #ifdefs to #if 1 and 2) rewrite all #ifdefs to #if 0.

Transformation Rule Synthesis. To synthesize transformation

rules, we used Clang to translate the concrete patch to the ex-

tended DSL. To generate alignment, we use the LLVM GumTree

implementation as the AST differencing algorithm [4]. The ASTs

used by the original LLVM GumTree implementation only include

NodeKind and Code; we added information about types, position,

function names, filenames, etc.

Source code Transformation. While our synthesis algorithm is

expressed in terms of ASTs, FixMorph transforms source code by
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leveraging the unique source to source transformation features pro-

vided by Clang/LLVM. Accordingly, the code layout and comments

not affected by the patch are preserved.

6 EVALUATION

In this section, we evaluate the effectiveness of FixMorph in back-

porting patches and answer the following research questions:

RQ1 How effective is FixMorph in backporting patches?

RQ2 How does FixMorph compare with existing tools?

RQ3 Can FixMorph backport fixes of security vulnerabilities?

Dataset: To evaluate FixMorph, we build our dataset in the form of

patch pairs (pmainline, pi), where pmainline is the patch committed

to the mainline version, and pi is the patch backported to vi. We

build our dataset according to the following criteria:

• Patch pmainline was submitted to the mainline during 2011-2019

and versions below 5.0;

• To generate typed ASTs, the mainline version should be com-

pilable before and after introducing pmainline, and version vi
should be compilable before pi. We omit the subjects for which

we cannot generate complete ASTs;

• Our prototype only supports modification to *.c files, not header

files, hence the patch should only modify *.c files. Further to

reduce the complexity, we select patches affecting a single *.c file.

• If pmainline has been backported to multiple versions, we select

the oldest one as pi which represents the most challenging task;

• We eliminate the patches that have been used in our study (Sec-

tion 2.3) to ensure no overlap between our study and evaluation.

Selecting patches affecting only a single *.c file may indeed focus

the evaluation on simpler patches. Nevertheless, we find that 80%

of all backported patches in the Linux kernel (42036/51663) affect

only a single file. We filter the backported patches using the above

criteria, and randomly select 350 pairs to construct our dataset.

Table 2 shows the distribution of the patch size (number of lines

changed) in our dataset.

Table 2: Patch size distribution in our dataset

Lines 1-2 3-4 5-6 7-8 9+ Total

Patches 165(47%) 78(22%) 50(14.5%) 29(8.5%) 28(8%) 350(100%)

Moreover, we evaluate FixMorph in backporting security vul-

nerabilities by selecting 30 patches that fix CVEs using the same

criteria. We focus on the CVEs reported during 2014-2019, andmade

sure that the 30 CVE patches are disjoint from the 350 patches in

our main dataset.

All experiments are conducted on a Dell Power Edge R530 with

Intel(R) Xeon(R)CPU E5-2660 processor and 64GB RAM.

6.1 [RQ1] Effectiveness of FixMorph

To evaluate the effectiveness of FixMorph, for each pair (pmainline,

pi), we use FixMorph to automatically backport pmainline from

the mainline to vi, and use the developer backported patch pi to

verify the correctness of the auto-backported patch. We evaluate

the correctness of the auto-backported patches by checking their

syntactic and semantic equivalence with the developer backported

patches.

Table 3: Effectiveness in backporting kernel patches (a dif-

ferent dataset from the dataset used in Section 2.3)

Type Total Plausible Syntactic Semantic

I 1 1 (100%) 1 (100%) 1 (100%)

II 235 216 (91.9%) 204 (86.8%) 204 (86.8%)

III 9 7 (77.8%) 4 (44.4%) 7 (77.8%)

IV 30 22 (73.3%) 16 (53.3%) 19 (63.3%)

V 75 41 (54.7%) 22 (29.3%) 32 (42.7%)

Total 350 285 (81.4%) 245 (70.0%) 263 (75.1%)

Table 3 summarizes our evaluation results. Column łTypež indi-

cates the class of subjects as defined in Section 2.3 and łTotalž is the

number of pairs for each type. Column łPlausiblež shows the num-

ber of backported patches that can be compiled in the form of x (y%),

where x is the total number of instances that were backported andy

represents the percentage. Columns łSyntacticž and łSemanticž rep-

resent the number of patches that are syntactically and semantically

equivalent to the developer backported patch, respectively. Out of

the 350 subjects, FixMorph can backport 285 of them without intro-

ducing build failures, which accounts for 81.4%. 245 subjects (70.0%)

result in code that is identical to the developer’s patch, while 263

subjects (75.1%) result in code that is semantically equivalent to

the developer’s backported patch. FixMorph shows good results

in Type-I, II, and III, indicating its effectiveness in identifying cor-

rect patch locations and changing the namespace. Type-IV requires

changing both the patch location and namespace, which is more

challenging, but FixMorph still can correctly backport 54.7% of

them. Type-V includes the most challenging cases, where 42.7% of

the patches are correct. The main reason is that FixMorph fails to

transform some complex logic and structural changes. To backport,

reasoning about the semantics of those patches is needed, which is

out of the scope of this work.

6.2 [RQ2] Comparison with Existing Tools

To compare FixMorph with existing techniques, we consider the

following baseline approaches:

• patch: the patch tool [3] from GNU Diffutils; by default, patch

requires the change to occur at the indicated line numbers;

• patchc : the patch tool in context mode [3] (--context option),

providing flexibility about how many of the patch’s context lines

are required to be matched;

• Sydit*: our reimplementation of Sydit [24] for C; Sydit is a pro-

gram transformation tool for Java that learns a transformation

rule from a single example, in which it simply generalizes all the

identifiers and patch locations. Sydit* follows Sydit, but uses

GumTree [8] instead of ChangeDistiller [9] as the AST differenc-

ing algorithm. This should benefit Sydit* because GumTree has

been shown to be more accurate than ChangeDistiller.

For a fair comparison, we provide the correct file to patch to all

these tools by querying the Git version control system.

Table 4 summarizes our quantitative comparison results. Columns

3ś6 represent the correctly backported patches by patch, patchc ,

Sydit*, and FixMorph, respectively. The result for each tool and

each class is shown in the form x (y%), where x is the number of

patches that have been correctly backported, and y is the accuracy.
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Table 4: Quantitative comparison with existing tools

Type Total patch patchc Sydit* FixMorph

I 1 1 (100%) 1 (100%) 0 (0%) 1 (100%)

II 235 124 (53%) 182 (77%) 89 (38%) 204 (87%)

III 9 0 (0%) 0 (0%) 2 (22%) 7 (78%)

IV 30 0 (0%) 0 (0%) 6 (20%) 19 (63%)

V 75 0 (0%) 0 (0%) 0 (0%) 32 (43%)

Total 350 125 (36%) 183 (52%) 97 (28%) 263 (75%)

Despite having the extra advantage of localizing the correct source

file, the patch tool still failed to correctly backport around half

of the instances in Type-II. This illustrates the difficulty in iden-

tifying the correct patch locations. In contrast, patchc performs

better than the patch tool because it uses context information to

find the correct patch location. The key insight we draw from this

observation is that context information is important in identifying

patch locations. Sydit* performs quite well in backporting patches

to the correct location due to the usage of additional AST context

information. However, since transformation rules synthesized by

Sydit* are usually over-generalized, Sydit* incorrectly backports

the patches to many locations where the patch should not be ap-

plied. We regard a backport as a false positive if it produces a patch

that modifies the wrong locations in vi. Overall, Sydit* produces

97 correct patches that are semantically equivalent to the developer

patches. FixMorph outperforms all the above tools, especially for

the challenging cases, i.e., Type-III, IV, and V. The transformation

guided by the alignment of the mainline and target version allows

FixMorph to correctly backport more Type-III, IV, and V patches.

To better understand the reliability of each tool, we further eval-

uate the quality of the transformations for each tool by calculating

the precision and recall. Table 5 shows the qualitative comparison

results. Columns łP%ž and łR%ž indicate the precision and recall,

respectively. Overall, FixMorph produces much fewer incorrectly

backported patches (higher precision) and missed much fewer cases

that should be patched (higher recall) than the other tools.

Table 5: Qualitative comparison with existing tools

Type
patch patchc Sydit* FixMorph

P% R% P% R% P% R% P% R%

I 100 100 100 100 0 0 100 100

II 77 63 99 78 46 69 95 91

III 0 0 0 0 29 50 100 78

IV 0 0 0 0 38 30 86 70

V 0 0 0 0 0 0 78 48

Total 71 42 82 59 44 43 92 80

6.3 [RQ3] Backporting Vulnerability Fixes

To investigate the usefulness of FixMorph in backporting secu-

rity vulnerability fixes, we evaluate FixMorph on 30 CVE fixes.

Table 6 shows the statistics of our targeted CVEs, including the

CVE id, vulnerability type, the patch commit id, and the release

and target versions. It also shows the evaluation results, where the

columnłResultž indicates whether the backported patch is semanti-

cally equivalent to the developer backported patch.

Table 6: Results of backporting CVE tagged bug fixes

CVE ID
Vuln

Type

Patch

Commit

Release

Version

Target

Version
Result

CVE-2018-1118 IL 670ae9ca 4.17 4.9 ✓

CVE-2018-19985 MO 5146f95d 4.20 3.16 ✗

CVE-2019-3701 DoS 0aaa8137 5.0 3.16 ✓

CVE-2017-0786 IL 17df6453 4.14 3.16 ✓

CVE-2018-1092 NPD 8e4b5eae 4.16 3.2 ✓

CVE-2018-1108 RNW dc12baac 4.17 4.14 ✗

CVE-2014-8481 NPD a430c916 3.18 3.17 ✓

CVE-2015-7513 DZ 0185604c 4.4 3.2 ✓

CVE-2018-16658 IL e4f3aa2e 4.19 3.16 ✓

CVE-2018-1094 NPD a45403b5 4.16 4.14 ✗

CVE-2018-9363 IO 7992c188 4.18 3.16 ✓

CVE-2018-10881 MO 6e8ab72a 4.17 3.16 ✓

CVE-2018-10879 UAE 5369a762 4.17 3.16 ✗

CVE-2016-9191 DoS 93362fa4 4.10 3.12 ✓

CVE-2018-10880 DoS 8cdb5240 4.17 3.16 ✗

CVE-2016-0728 IO 23567fd0 4.4 3.10 ✓

CVE-2018-11412 MO 117166ef 4.17 3.16 ✓

CVE-2017-7184 MO 677e806d 4.11 3.2 ✓

CVE-2015-5257 NPD cbb4be65 4.3 3.2 ✗

CVE-2017-12153 NPD e785fa0a 4.14 3.2 ✓

CVE-2016-0758 IO 23c8a812 4.6 3.12 ✓

CVE-2016-6213 DoS 296990de 4.12 4.1 ✓

CVE-2014-9529 MO a3a87844 3.19 3.2 ✓

CVE-2017-11600 MO 7bab0963 4.13 3.2 ✓

CVE-2017-12193 NPD ea678998 4.14 3.16 ✗

CVE-2016-3713 IL 9842df62 4.6 4.4 ✓

CVE-2017-8824 UAF 67f93df7 4.16 3.2 ✓

CVE-2016-8650 MO f5527fff 4.17 3.16 ✓

CVE-2017-2584 IL 129a72a0 4.10 3.10 ✗

CVE-2018-14633 MO 18164943 4.19 3.16 ✗

Total - 30 - - 21
RNW : Random Number Weakness, NPD: Null Pointer, DoS: Denial of Service, UAF : Use After Free,

MO: Memory Overflow, IL: Information Leakage, IO: Integer Overflow, DZ : Divide by Zero

FixMorph was able to successfully backport 21 out of 30 CVE

patches fixing a variety of bugs with semantic equivalence to the

developer ported patch. These results suggest that FixMorph can be

useful in helping developers fix security vulnerabilities effectively.

We also manually analyzed the reasons for the failed cases. For some

cases (e.g., CVE-2018-10879), FixMorph could not determine the

correct patch locations because the mainline and target version are

very different. For some cases, the adaptation requires complex code

changes that would involve understanding the patch semantics.

6.4 Discussion

In this section, we present some real examples from our evaluation

to understand the capabilities of FixMorph.

Better than the developer patch. Backporting patches is an error-

prone task, in which developers can make mistakes. In our eval-

uation, we find that FixMorph performs better than the devel-

oper in some cases. For instance, the mainline patch at commit ID

45d738604 fixes a bug in a usb driver, in which a delay is added

4The detail of each commit can be found in https://kernel.googlesource.com/
pub/scm/linux/kernel/git/stable/linux-stable/+/COMMIT_ID
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to the function musb_h_tx_flush_fifo. However, the developer

backported this patch at commit ID 98b91bfa to a different func-

tion musb_host_tx in the same file although the original function

musb_h_tx_flush_fifo exists in the old version. This patch was

eventually reverted at commit ID c8443922 after 42 days. In contrast,

FixMorph transforms the patch at the correct location.

Semantically equivalent with the developer’s patch. We find in-

stances where FixMorph backports a patch in a syntactically differ-

ent but semantically equivalent way as the developer. The mainline

patch at commit ID 74717b28 fixes a bug in the RTC interface.

This patch changes an if-condition by inserting a function call to

ktime_before. Unfortunately, this function does not exist in v3.2.

When this patch was backported to v3.2 (commit ID 69328181), the

developer improvised and replaced the function call with a seman-

tically equivalent expression. In contrast, FixMorph imports the

missing function ktime_before from themainline to v3.2, resulting

in a different, but semantically equivalent patch.

Incorrectly backported patch. We also find instances where the

backported patch produced by FixMorph has a different behav-

ior from the developer patch. The mainline patch at the com-

mit 7809a611 fixes a regression error by inserting an API call

IS_HASWELL with dev_priv as the first argument. The developer

who backported the patch to v3.2 in commit 2dd2c68e used a differ-

ent variable dev as the first argument. However, since the variable

dev_priv exists in v3.2, FixMorph does not change the argument

dev_priv to dev. FixMorph cannot disambiguate such cases, i.e.

to keep the original argument dev_priv, or to change it to dev.

Internal DSL. FixMorph’s DSL allows expressing transformation

rules that can be applied in a flexible way (i.e. for each target version,

FixMorph can decide whether the flexible predicates should be

fixed or relaxed using the synthesis process). FixMorph’s DSL is

only for internal use, to reduce the search space by considering a

restricted language, rather than for communication with developers.

In the future, we could consider how to present the transformation

rules using a syntax such as that of Coccinelle’s DSL [32], which is

familiar to kernel developers. Note that the choice of DSL syntax is

not a core contribution of this paper.

6.5 Threats to Validity

Several threats may affect the validity of our evaluation. First, since

the baseline tool Sydit is designed for Java programs, to compare

with it, we implemented Sydit* by ourselves. We tried our best to

follow Sydit’s design, but the differences in implementation details

may still affect its results. Second, although FixMorph shows strong

efficacy on the evaluated benchmark, it may perform differently on

other subjects. To mitigate this problem, we evaluated FixMorph

on a fairly large dataset that covers different scenarios. Last, we

manually compare the backported patches with developers’ patches

to verify their correctness. To reduce the potential bias caused by

manual analysis, two authors of this paper independently double

checked the correctness of generated patches.

Limitations of FixMorph. Our implementation is based on LLVM/-

Clang, and thus inherits the limitations of that framework. Since

handling all combinations of compilation options is not scalable,

when compiling the project, we only consider two sets of compi-

lation options (see Section 5). This strategy works for most cases,

but in some cases, it could result in certain un-compiled blocks of

code being unavailable to FixMorph, thus leading to incomplete

backporting or even failure. To alleviate this limitation, we allow

users to specify the values of preprocessor variables according to

their working environment.

7 RELATED WORK

Backporting. To help developers backport patches, several ap-

proaches have been proposed [31, 40]. Tian et al. [40] proposed an

approach to automatically identify bug-fixing patches, that should

be backported to old versions. Ray et al. [31] proposed to detect

and characterize porting errors to help developers avoid them. In

contrast, we directly backport patches and provide patch sugges-

tions for developers. Another line of relevant work is the Backports

Project [1], which enables old Linux kernels to run the latest dri-

vers. The Backports Project develops a set of tools to automate

the backporting process for Linux drivers [32, 39] to make them

compilable with old kernel versions. The Backports Project uses

the program matching and transformation tool Coccinelle [19] to

allow developers to express backporting transformation in a generic

way that is expected to be applicable to many versions. In contrast,

FixMorph is fully automated and does not require manually cre-

ated transformation rules. A prior approach by Thung et al. [39]

automatically extracts code transformation rules. However, this

approach requires guidance from compilation errors, and it can

only transform patches that affect a single line of code.

Program Transformation. Program transformation techniques

infer transformation rules from human-written patches and transfer

patches to another codebase by applying the inferred rules. Program

transformation has been applied to many software maintenance

tasks, including automating repetitive code edits [24, 25, 27, 28, 33],

intelligent refactoring [10, 26] and fixing software bugs [6, 7, 22].

Those approaches solve problems similar to FixMorph, but there

are key differences. Most existing works infer transformation rules

from multiple human patches, while FixMorph synthesizes rules

from only one patch. AlthoughGenPat [16] and Sydit [24] also rely

on only one example, they either require a large codebase to provide

statistical information or synthesize rules by simply generalizing all

identifiers, which results in many false positives, as also confirmed

by our experiments on Linux. In contrast, FixMorph leverages the

similarity between Linux kernel versions to synthesize properly

generalized transformation rules.

Program Synthesis. Program synthesis has been applied in many

domains (e.g., string manipulation [14], fixing vulnerabilities [41],

and program transformation [26, 33]). Syntax guided synthesis [5]

(SyGuS) unifies synthesis tasks from different domains by spec-

ifying the domain-specific syntax and semantics of the desired

program. SyGuS constructs programs using the given syntax and

semantics with reference to given input-output examples. Sketch-

ing [36, 37] allows programmers to express their insight about an

implementation as a partial program. These techniques have been

used in many domains but they require detailed specifications given
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by multiple examples. In our setting, however, only one example is

available.

Program Repair. Automated program repair approaches [13] au-

tomatically fix software errors. Existing repair systems usually gen-

erate a patch space according to predefined templates [12, 18, 21, 38],

then search for (or synthesize) the correct patch guided by a correct-

ness specification given via test cases [11, 20, 23, 29]. FixMorph

is not concerned with searching for, or generating a patch, but

rather adapting a patch that is already available. To patch Linux

code, we cannot assume the existence of tests, and thus none of the

test-based repair approaches are directly applicable.

8 REFLECTION AND LESSONS LEARNED

We now present some of the lessons learned from backporting

patches in Linux kernel.

Prevalence of backporting in Linux. Our empirical study spans

nine years of version histories (2011ś2019). It shows that the per-

centage of backported commits is relatively high (8% of studied

commits are backported), and it could take some time to backport

patches (10% of backported commits were backported after one

year). These observations are aligned with the results in an ear-

lier study that analysed eight years of backporting activities in the

Linux kernel (2005ś2012) [15]. Given the results in our study, we

observe that backporting patches still remains a challenge.

Types of backported changes. Our empirical study indicates that

backporting patches may involve complex changes beyond copy-

and-paste. Although most backporting tasks involve patches in

Type-I and Type-II, existing tools such as GNU patch that rely on

comparing and merging files cannot address many of them (Table 4).

In fact, although Type-II patches seem trivial to backport since no

adaptation to the code is required, finding the correct location is

nontrivial because (1) the order of the code modifications could

be different for the backport (e.g., the affected functions appear

in a different order); (2) although it may seem that only the line

number is different in the target version, the surrounding context

may also be vastly different, and simple find-and-replace cannot

locate such places; (3) some of the patch locations cannot be easily

found by referring to Git commit history, and either need expert

knowledge of the file changes or some other semantic methods to

find the correct place to insert the patch.

Importance of context. FixMorph fails to backport some patches

of Types III, IV, and V when the surrounding context is drastically

different in the target version. This raises the question of whether

context information helps in backporting in general. Indeed, we

learned from our results in Table 5 that context information is useful

in guiding both patchc and FixMorph in generating more correct

patches for most types of backporting.

Generalization of transformation rules. In terms of the level of

generalizations, SYDIT is the most abstract among all evaluated

approaches because it generalizes the transformation by abstract-

ing the context, whereas GNU patch is the least abstract because

it merely compares and merges files at the line level. The level of

generalization affects the precision and recall of each technique.

For example, since FixMorph over-generalizes more compared

to patchc , patchc has higher precision for Type II backporting

than FixMorph. Meanwhile, as under-generalizing could lead to

an increase in false negatives, the recall for Type II is higher in Fix-

Morph than the recall for patchc . To correctly backport patches,

we learned that it is important for an automated backporting tech-

nique to strike a balance in the generalization such that the context

is not over-generalized and the transformation is not over-specific.

Backporting security patches. To reduce the exposure to known

vulnerabilities, automatically backporting security patches is an

important application of FixMorph. Our evaluation shows that Fix-

Morph is effective in backporting security patches (i.e., successfully

backported 21/30, that is, 70% of the evaluated CVEs). Although we

only evaluate on the Linux kernel, Table 3 shows that FixMorph

can backport patches for various types of vulnerabilities. Instead

of generating patches from scratch, future research on automated

repair of security vulnerabilities could look into deriving fixes by

referring to existing patches (i.e., patch transplantation [35]).

9 FINAL REMARKS

We investigated the backporting activities in the Linux kernel be-

cause it is a large-scale widely used codebase. The sheer complexity

of the patches, the diversity of the transformations involved, and

the absence of test cases as specification pose additional challenges

for patch backporting. Due to the popularity and importance of

the Linux kernel, it could be worthwhile for the program repair

community to evaluate efficacy of repair techniques on Linux. We

have made an open-source release of FixMorph to accelerate this

process.

We conducted our research in a responsible fashion without

introducing any unverified patches into the Linux kernel. In our

envisioned workflow, the patches are generated by our tool Fix-

Morph as a first step; they need to be vetted thoroughly by the

human developer in charge of the process before getting introduced

into the code-base of Linux versions.

At a technical level, this paper studies a different problem from

automated program repair. Instead of trying to generate fixes or

search for fixes, it tries to transplant a known fix into other program

versions Ð the automated patch transplantation problem [35]. This

work attempts to show the promise of automated transplantation of

patches on the Linux kernel code-base, thereby demonstrating the

practical promise of such techniques. Apart from automating soft-

ware maintenance tasks, such patch transplantation is of significant

practical value for reducing exposure to security vulnerabilities.

With the attack surface moving to edge devices (which may be

running older versions of Linux), propagating patches to old Linux

versions can be a meaningful security enhancement aid.

Dataset and tool: https://fixmorph.github.io.
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